Epithermal Deposits

Epithermal Systems

Low and high sulphidation deposits

Submarine Epithermal Systems

The significance of Epithermal Deposits as a Gold Resource

Distribution of Epithermal Deposits

Surface expression of a low sulphidation epithermal deposit

Low Sulphidation Deposits Ore Styles and Alteration Assemblages

Low Sulphidation Deposits Fluid Inclusion Temperatures and Salinities

Low Sulphidation Deposits Oxygen and Hydrogen Isotopic Data

Low Sulphidation Deposits Temperature-pH Conditions

 $3 \text{ KAISi}_{3}\text{O}_{8} + 2 \text{ H}^{+} = \text{KAI}_{3}\text{Si}_{3}\text{O}_{10}(\text{OH})_{2} + 6 \text{ SiO}_{2} + 2 \text{ K}^{+}$

The Low Sulphidation Epithermal – Geothermal Link

Old Faithful, Yellowstone

Wairakei Geothermal Power Plant, New Zealand

The Low Sulphidation Epithermal – Geothermal Link

Geothermal Well Scalings from Cerro Prieto, Mexico

Clark, J.R. & Williams-Jones, A.E., (1990) Analogues of epithermal gold-silver deposition in geothermal well scales: Nature, v. 346, no. 6285, pp 644-645.

Controls on the Solubility of Gold

 $Au(HS)_2^- +H^+ + 0.5 H_2O$ = Au + 2H₂S +0.25O₂

 $Au(HS)^{\circ} + 0.5 H_2O$ = Au + H₂S +0.25O₂

 $AuCl_2^- + 0.5H_2O$ = Au + 2Cl⁻ + H⁺ +0.25O₂

Williams-Jones et al. 2009

A model for the formation of low sulphidation epithermal deposits

- 1) Magmatic vapour condenses in meteoric water
- 2) Gold transported as Au $(HS)_2^{-1}$
- 3) Water rises and boils, releasing H_2S and destabilizing $Au(HS)_2$ -
- 4) Gold deposits as the native metal

Epithermal Systems

High sulphidation deposits

High Sulphidation Deposits Ore Style and Alteration Assemblages

Acid-Sulphate Alteration

Vuggy silica

Advanced argillic alteration

All components of the rock leached leaving behind vuggy silica (pH < 1) Alunite $(KAI_3(SO_4)_2(OH)_6)$ Kaolinite $(AI_2Si_2O_5(OH)_4)$ Quartz and Pyrite

Conditions of Acid-Sulphate Alteration

King et al., 2014

The high sulphidation Pascua epithermal deposit, Chile

Chouinard et al., 2005

Mineralization at Pascua

High Sulphidation Deposits Oxygen and Hydrogen Isotopic Data

High Sulphidation Deposits Fluid Inclusion Temperatures and Salinities

A Model for the Formation of High Sulphidation Deposits

FIG. 12. Two-stage model for high-sulfidation ore formation proposed by Arribas (1995), modified to highlight likely water compositions involved in each stage of ore genesis. Stage 1 (A) is the ground preparation stage, whereby magmatic gases generate an acid sulfate high-sulfidation water that is responsible for the initial barren stage of residual silica and advanced argillic alteration. The second stage involves gold deposition from acid chloride low-sulfidation waters (B₁) or acid chloride brines (B₂).

Cooke and Simmons, 2000

Controls on the Solubility of Gold

 $Au(HS)_2^- +H^+ + 0.5 H_2O$ = Au + 2H₂S +0.25O₂

 $Au(HS)^{\circ} + 0.5 H_2O$ = Au + H₂S +0.25O₂

 $AuCl_2^- + 0.5H_2O$ = Au + 2Cl⁻ + H⁺ +0.25O₂

Williams-Jones et al. 2009

Lessons from Indonesia

The Sangihe Au-Ag Deposits

Metal zoning in pyrite

Copper map for Py II at Sangihe

Gold map for pyrite at Pascua

Cu (green) As (blue) maps for pyrite at Pascua

The Lycurgus Cup – dichroic glass and nanogold

A possible explanation for "invisible gold" in pyrite – electrostatic attraction of negatively charged nanogold particles to the surfaces of positively charged pyrite Williams-Jones et al. 2009

The Sangihe Model

King et al.(2014)

Kawah Ijen - High Sulphidation Epithermal Deposit in the Making?

Sulphur condensation and acidity creation

 $4H_2O (gas) + 4SO_2(gas) = 2S (solid) + 2H_2SO_4 (gas)$ $H_2SO_4(aq) = 2H^+ + SO_4^{2-}$

Sampling the gases

Gas condenser

Vapour-induced acid-sulphate Alteration

Acid-Sulphate Alteration

Pyroclastic rocks altered to alunite $(KAI_3(SO4)_2(OH)_6 \text{ and pyrite})$

Leached and esite pillow containing $> 85 \text{ wt.}\% \text{ SiO}_2 - \text{residual silica}$

Acid Sulphate Alteration at Kawah Ijen

Alunite-pyrite alteration

Alunite-pyrite vein

Distribution of Alteration at Kawah Ijen

Scher et al. (2013)

Gold Silver mineralisation at Kawah Ijen

Solubility of Silver in HCI-H₂O Vapour

Silver solubility increases with hydration

Migdisov and Williams-Jones (2013)

Water Clusters Hydrating a Metal Species in the Gas Phase

Williams-Jones and Migdisov (2014)

Think about clowns and balloons

The effects of complexation and particularly solvation by H₂O clusters make heavy metals volatile

Extracting Thermodynamic Data

The linear relationship between ΔG and reciprocal temperature enables extrapolation to high temperature

$Log K = -\Delta G/RT$

Migdisov and Williams-Jones (2013)

Solubility of Silver in HCI-H₂O Vapour

Hydration increases with increasing H_2O pressure or density but decreases with increasing temperature

Solubility increases with increasing temperature but reaches a maximum because of the effect of decreasing hydration

Migdisov and Williams-Jones (2013)

Epithermal Au Ore Formation

Vapour-dominated hydrothermal plume rises from magma transporting Au and depositing it as temperature drops below 400°C

Hurtig and Williams-Jones (2014)

References

Chouinard, A., Williams-Jones, A.E., Leonardson, R.W., Hodgson, C.J., Silva, P., Téllez, C, Vega, J., and Rojas, F., 2005a, Geology and genesis of the multistage high-sulfidation epithermal Pascua Au-Ag-Cu deposit, Chile and Argentina: Econ. Geol., v. 100, p. 463–490.

Clark, J.R. and Williams-Jones, A.E., (1990) Analogues of epithermal goldsilver deposition in geothermal well scales: Nature, v. 346, no. 6285, pp 644-645.

Cooke, D.R, Simmons, S.F., 2000. Characteristics and genesis of epithermal gold deposits. In: Hagemann, S.G., Brown, P.E. (Eds.), Gold in 2000, Reviews in Econ. Geol. vol. 13. Society of Economic Geology, Boulder, CO, pp. 221–244.

Williams-Jones, A.E. and Heinrich, C.H., 2005, Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits: Econ. Geol., 100, p.1287-1312.

King, J., Williams-Jones, A.E., van Hinsberg, V., and Williams-Jones, G. High sulfidation epithermal pyriote-hosted Au (Ag-Cu) ore formation by condensed magmatic vapors on Sangihe Island, Indonesia: Economic Geology, v. 109, p. 1705-1733. Scher, S., Williams-Jones, A.E., and Williams-Jones, G., 2013. Fumarolic activity, acid sulfate alteration and high sulfidation epithermal precious metal mineralization in the crter of Kawah Ijen volcano (Java, Indonesia). Economic Geology, 108, 1099-1118.

Migdisov, A.A. and Williams-Jones, A.E., 2013. A predictive model for the transport of silver chlioride by aqueous vapor in ore-forming magmatic-hydrothermal systems. Geochmica et Cosmochimica Acta, 104, 123-135.

Hurting, N., and Williams-Jones, A.E., 2014. An experimental study of the transport of gold through hydration of AuCl in aqueous vapor and vapor-like fluids. Geochimica et Cosmochimica Acta, 127, 305-325.

Williams-Jones, A.E., and Migdisov, A.A., 2014. Experimental constraints on the transport and deposition of metals in oreforming hydrothermal systems. Society of Economic Geologists, Specia;I Publication 18, 77-95.